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A B S T R A C T   

The digital transformation of the AEC industry through BIM has improved productivity during detailed design 
and construction planning phases. Early design choices influence a project’s success but have yet to benefit from 
BIM-based approaches. This paper investigates the feasibility and acceptance of employing Generative Design 
(GD) to optimize early Mechanical, Electrical, and Plumbing (MEP) designs in residential real estate for space 
efficiency. Interviews indicate the main issue is acceptance due to the belief that a GD approach needs to be more 
robust. BIM is integrated with GD, utilizing the architectural layout (IFC) as input to generate design variants 
tailored to minimize technical space while ensuring installation feasibility. Robustness is assessed via Monte 
Carlo Simulation, revealing an estimated success rate of 99% (81% with 95% confidence). These results quantify 
the robustness of the approach, paving the way to broader acceptance of GD in the early phases of AEC projects.   

1. Introduction 

The AEC (Architectural Engineering and Construction) sector is one 
of the least digitalized industries and has a poor productivity index 
compared with other economic sectors [1,2]. The AEC industry’s digital 
transformation through BIM (Building Information Modeling) has 
increased design and construction planning productivity and decreased 
information losses between project phases [3]. Design companies have 
implemented BIM from the conceptual design phase, but BIM requires 
considerably more effort than the conventional planning process when 
the concept is being defined [3]. The issue is how to apply the BIM 
methodology in the early phase of the project without significantly more 
significant effort. 

Choosing the right design concept at an early phase of the project 
greatly impacts its success. A poorly defined concept can significantly 
increase costs if changes must be made in later phases. Further, even if 
the idea is ideal for the type of building and its future use, the equipment 
defined in the concept must fit in the space reserved. A typical example 
of this issue is the space reservation for technical installations in 
buildings for the residential real estate market, where space optimiza-
tion is increasingly a key challenge [4]. Space reservation refers to the 
space that the architect must consider in the building, which will be 
occupied by technical installations and cannot be used for living or 
communal areas. Reserving insufficient technical space in the project’s 
early stage can significantly negatively impact the project’s profit. This 

impact increases the design costs of redefining the architectural layout 
or technical solution and can affect the building’s value. So, it is crucial 
to analyze different possible concepts in the project’s early phase to 
identify the optimal solution. 

The space reservation includes the technical rooms and their hori-
zontal and vertical distribution. A Mechanical, Electrical, and Plumbing 
(MEP) expert usually gives this estimation and explores and evaluates 
different solutions for the MEP system with the architect. The final 
design involves various alternative analyses, calculations, and model 
representations in BIM. This iterative process changes the building’s 
architectural layout and the MEP system concept, and each iteration 
requires several weeks of effort. The lack of an automated process that 
can effectively evaluate spatial issues makes evaluating multiple feasible 
variants impractical. 

In other industry sectors, such as architecture [5] or structural en-
gineering [6], Generative Design (GD) technology is used to create and 
evaluate a wide range of initial concepts and tasks that could not be 
carried out in a reasonable time through conventional processes. In-
dustry skepticism is revealed in expert opinions [7] and surveys [8,9], 
which show that half the interviewees think GD cannot be applied to 
their projects. The question is whether using a GD method in the initial 
phase of a building project is feasible and whether it will be robust 
enough to bring value to the market and improve the traditional 
method. 

To create a GD-based tool that the industry will accept, it must fulfill 
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three characteristics: the basis is a class of buildings that can be modeled 
and for which quantitative evaluations of the solutions may be made, 
enabling algorithmic comparison. Then, a GD algorithm must find 
feasible solutions and be robust concerning model variations and cal-
culations. Finally, the algorithm must find the optimal (or near-optimal) 
solution in a reasonable time. 

The motivation for this paper was to present a proof of concept of a 
BIM-GD method applied to MEP projects for residential buildings in 
Switzerland. The study was developed by Lucerne University of Applied 
Sciences and Arts’ iHomeLab Research Center and Basler & Hofmann 
(B&H) in a joint innovation project. Basler Hofmann is a Swiss consul-
tancy, planning, and engineering company. B&H implements BIM early 
in all projects and is facing an increase in the necessary engineering 
resources for the above reasons. This increase is more pronounced in 
MEP Residential Projects, so this study focuses on innovations in this 
field. 

The paper is organized as follows. In Section 2, we present the state 
of the art regarding Generative Design (GD) algorithms using BIM and 
introduce methods to prove the robustness of such algorithms. We use 
Principal Component Analysis (PCA) to visualize solution groups to 
evaluate the solutions generated. Section 3 describes the paper’s 
approach, based on the V-Model of Systems Engineering [10,11], a 
general development methodology applicable to complex projects. We 
then present the results regarding the robustness and implementation of 
the algorithm. The final sections give a critical discussion and conclu-
sions, including directions for further work. 

2. State-of-the-art 

This section presents a state-of-the-art review of the Generative 
Design and BIM technologies relevant to the study’s aim. It also in-
troduces the concepts of robustness in the literature related to Genetic 
Algorithms necessary for validating the results. 

2.1. Generative design and BIM 

Generative Design (GD) is a rule-driven design process based on an 
algorithm that uses parametric modeling to automatically explore, 
iterate, and optimize design possibilities based on predefined high-level 
constraints and goals. The parametric modeling defines the design 
space, while the algorithm determines how the parameters are modified 
to search for the optimal design. In 2010, Krish [12] presented a process 
to combine CAD systems and Generative Design, which uses the overall 
scheme of a generative system developed by Bohnack et al. [13]. In [12], 
the designer is central in continuously modifying the generative scheme 
to find a viable design solution. Abrishami et al. [14] developed a new 
BIM-GD framework based on [12]. The framework proposes that project 
designers define the coding information (design constraints and context) 
and reflect the client(s)’ needs. The engineering team and the client 
should evaluate the alternative designs created by the generative 
system. 

The methods of GD in this context are based on using a Genetic Al-
gorithm (GA) to perform the parameter search. A GA is an adaptive 
heuristic approach to optimization first proposed by John Holland in his 
book “Adaptation in Natural and Artificial Systems” (1975) [15]. The 
Genetic Algorithm is an adaptive heuristic approach to solving optimi-
zation problems. It belongs to the class of Evolutionary Algorithms (EA), 
see for example [16]. The overall approach is based on a parameteri-
zation of the solution space; candidates are evaluated based on a fitness 
function, and then the best are recombined in the following generation. 
The population size is preserved in each generation; the new generation 
is created by recombination of the parameterized potential solutions; in 
some cases, this is modified with random changes. This process con-
tinues until a stopping criterion is reached. This may be having reached 
a set number of generations, or the fitness function has reached a pre-
scribed level. The best solution according to the fitness function is 

chosen as the solution to the optimization problem. 
GA can solve a Single or Multiple Objective Problem (SOP or MOP). 

In an SOP, an individual’s fitness is evaluated using only one objective to 
be minimized or maximized. For an MOP, the quality of a solution is 
defined by its performance against several, possibly conflicting, objec-
tives and represents a range of different trade-offs between these ob-
jectives. Selection is made using the concept of dominance. A solution is 
said to dominate another if its score is at least as high for all objectives 
and is strictly superior for at least one. A solution is called non- 
dominated or optimal if it is not dominated by any other. The set of 
all non-dominated solutions is called the Pareto set or the Pareto Front. 
The Pareto Front solutions are the ones that will be used to generate the 
next generation of offspring [17]. 

Building Information Modeling (BIM) is a widespread methodolog-
ical approach well-documented in the AEC industry; for example, for an 
overview, see for example [3]. Generative Design using GA has been 
integrated into the Autodesk Revit “Generative Design” tool, which runs 
in Dynamo and uses the GA NGSA-II [31]. Despite this integration, the 
widespread application of GD in BIM-based projects is still in its infancy 
and, in particular, has not been applied to the early phases of AEC 
projects. 

2.2. Generative design algorithm robustness and Monte Carlo simulation 

One of the key objections to applying GD is that it is not perceived to 
be robust [8,9]. Robustness may be proved by showing that the GA can 
solve all possible MEP design problems proposed by an architect for a 
building’s technical spaces. Since the number of potential design prob-
lems is infinite, we choose Monte Carlo Simulation (MCS) to estimate the 
probability that the algorithm will fail. MCS is a well-established 
approach to estimating probabilities in such complex situations. MCS 
has been used to evaluate the risk of failure in many different domains 
and applications, such as in the design of tunnels [17], open-pit mines 
[18], structural reliability analysis [19–21], or concrete compressive 
strength prediction [22]. 

MCS is a numerical method for solving mathematical problems by 
simulating random variables. Based on the law of large numbers, a 
failure probability can be estimated based on a random generation of 
input variables [23]. Each combination of inputs will generate (or 
simulate) an outcome [24]. To evaluate the probability of failure using 
the MCS, the outcome is assessed according to rejection or approval 
criteria. Section 3.4 describes how MCS was applied to evaluate the 
robustness of a parametric design script developed in this study. 

2.3. Evaluation of genetic algorithm performance robustness 

The preceding discussion only addresses whether a solution can be 
found. It is still necessary to ensure the algorithm’s robustness. The al-
gorithm should return feasible solutions with a minimum fitness, and 
this level must be achieved within a specified amount of time. This en-
sures that the algorithm will work within the application context of MEP 
planning in the early phase of a residential building project. This cor-
responds to a Boolean robustness criterium as defined in [25]. 

According to [16], the variance of an algorithm’s performance can be 
considered across three dimensions, representing three different types of 
robustness. The GA robustness across problem instances requires the GA 
to find an acceptable solution when used across all the problem possi-
bilities it intends to solve. When the performance of a GA achieves a 
good level across the entire range of problems, the GA is widely appli-
cable. If the GA performance is lower on some problems, the GA is called 
fallible. 

Another popular interpretation of algorithm robustness is related to 
performance variations caused by different parameter values of the GA 
and considers the GA robustness across parameter values [17]. In this 
case, the relevant parameters p of the algorithm are the population size, 
number of generations, crossover probability, and mutation probability. 

E. Pestana et al.                                                                                                                                                                                                                                 



Automation in Construction 165 (2024) 105566

3

When p influences the performance, the GA is called tunable; otherwise, 
it is called tolerant. The extra computational effort is needed to apply a 
larger initial population size in a GA [16]. A typical progress curve of an 
evolutionary process makes this unnecessary. Usually, a few generations 
are sufficient to reach the same level, making the extra effort 
questionable. 

Another point is that it is possible to divide the run of a GA into two 
equally long sections. The progress in fitness increase in the first half of 
the run is significantly more significant than in the second half. This 
suggests that the effort spent after a specific time (number of genera-
tions) will unlikely improve solution quality. Nevertheless, these two 
points should be tested and verified. 

GA robustness based on the initial seed number may also be used 
[16], as well as several independent repetitions of a run with the same 
setup, but different random variable seeds are needed to verify the GA’s 
robustness to the seed value. The GA instance is called stable if the 
difference between all the best results is insignificant. Otherwise, it is 
called unstable. 

To ensure the algorithm is robustly applicable in a real application 
context, we must check that the performance is appropriate, tolerant, 
and stable. 

2.4. Visualization of results via principal components analysis 

Given the many parameters used to describe the solutions, many 
solutions may perform similarly in the fitness function. Therefore, it is 
essential to determine whether the algorithm generates solutions over a 
broad section of the space, as there may be better solutions in other 
domains. Studies [16,17] suggest analyzing variance (ANOVA) on the 
different Pareto front solutions to determine if any observed differences 
are due to random effects. Other studies [26,27] used a Principal 
Components Analysis (PCA) to visually verify the clusters found in the 
Pareto solutions. 

Principal Components Analysis is an approach to transforming data 
where each successive axis displays a decreasing variance. PCA produces 
linear combinations of the original variables to generate the axes, also 
known as principal components or PCs. In this study, we followed the 
procedures described in [26,27] to perform the PCA analysis. By 
creating scatter plots in 3D with just the first few PCs, it is possible to 
visualize the distribution of the generated solution and estimate the 
solutions’ robustness in the sense that different parts of the parameter 
space are represented in the solutions. 

2.5. Research gap 

The research gap identified is first to determine what has prevented 
the widespread introduction of GD in BIM projects, particularly in the 
early phases of AEC Projects. Due to the various successful applications 
of GD in other project phases and the integration of GD technology in 
BIM tools, acceptance is assumed to be the main problem. Therefore, this 
paper first concentrates on determining the reasons for a lack of 
acceptance and then demonstrates how GD can be implemented to 
address these issues with a prototype. 

3. Methodology 

The V-Model of Systems Engineering [10] was considered an 
appropriate approach for developing and testing GD in AEC early-stage 
projects. It emphasizes a sequential approach, where each development 
phase is systematically followed by a corresponding testing phase, 
ensuring a rigorous and structured process. It focuses on validation and 
verification, ideal for projects requiring clear specifications and thor-
ough testing. The V-Model of Systems Engineering emphasizes clear 
problem definition, direct stakeholder involvement, and rigorous testing 
to validate the robustness of solutions. This approach, supporting iter-
ative design processes, ensures that solutions meet stakeholder 

requirements before presentation, aligning with Systems Engineering’s 
emphasis on technical development and stakeholder engagement. Based 
on the aim of the research, to test a new approach for developing and 
testing GD in AEC early-stage projects it was anticipated that the 
stakeholders would provide precise requirements. In this project, the 
approach was:  

i. Identification of Stakeholder requirements  
ii. Problem formulation  

iii. Technical Development  
iv. Proof of Robustness  
v. Presentation to Stakeholders 

The tasks performed in each project phase are briefly described in the 
following sub-sections. 

3.1. Identification of stakeholder requirements 

The relevant stakeholders are the MEP experts, and we identified five 
(5) experts with the appropriate experience and roles within the Swiss 
firm Basler & Hofmann as Interviewees. The interviewees were engi-
neers active in all phases of AEC projects, but in particular, they were 
personnel involved in the project’s early phases. They had the task of 
making initial estimates of the space required to integrate the MEP 
systems in residential buildings. The interviewees have over five years of 
practical experience in such projects and are familiar with BIM and using 
tools such as Revit in their daily work. Their work profile included 
identifying the size of technical rooms, shafts, and the horizontal dis-
tribution height in the project’s early phase, which was a major task for 
them. From the architectural point of view, their goal was to minimize 
the technical space to ensure more usable space in the buildings. 
Ensuring that the predefined space is sufficient and to ensure the in-
stallation’s feasibility. 

The interviews were structured based on the following questions to 
understand their requirements:  

i. What are the central space-related values to be optimized?  
ii. Which MEP disciplines require the most space?  

iii. What are the architectural layout variables to be considered? 

3.2. Problem formulation 

According to [28], 84% of the Swiss population lives in buildings 
with pure residential usage, with 53% living in apartments and 27% in 
single houses. Accordingly, it was decided to focus only on apartment 
buildings, a large proportion of buildings in Switzerland. Based on the 
aim of the study and the stakeholder requirements identified, we can 
summarize the problem as follows: “How to automatically define the 
technical space needed for a residential building in Switzerland and 
prove the robustness of the algorithm and its performance.” 

Stakeholder requirements were reformulated as optimization 
criteria, and the overall problem became a multi-objective optimization 
problem (MOP). We identified the different types of residential buildings 
in Switzerland. A multi-case analysis was made to determine the 
possible variants of residential buildings and the variables and con-
straints required to describe the initial phase of an MEP design. The 
variables of MEP installations were explored according to the Standard 
VDI 2050 [29]. This German standard defines technical equipment room 
space and service shaft requirements. From this standard, it is possible to 
verify the different possibilities for the positions of a technical room in a 
building. 

Further, it also indicates the architectural variables that influence the 
building’s technical space requirements. We could identify at least one 
B&H residential MEP project for each variant type, except for buildings 
in the shape of stars, round, and with an atrium. The projects classified 
by variant are described in Fig. 1. Finally, the VDI 2050 also indicates 
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the procedure to calculate the technical equipment dimensions accord-
ing to different building needs, such as required fresh airflow, domestic 
hot water storage, and heating load. The building needs are obtained 
using the standard SIA 2024 [30], which indicates typical values for the 
power and energy requirements in lighting, ventilation, cooling, hu-
midification, heating, and plumbing. These typical values can be used 
early in the design stage. 

3.3. Technical development 

After identifying the variables and constraints of an early project 
MEP system, a prototype was created in the Autodesk Revit “Generative 
Design” tool, which runs in Dynamo and uses the GA NGSA-II [31]. This 
evolutionary multi-objective optimization algorithm is applied to 
various search and optimization problems. NSGA-II uses a fast non-
dominated sorting procedure, an elitist-preserving approach, and a 
parameterless niching operator [32]. Those features reduce its level of 
complexity and, consequently, the computation time compared to other 
GAs. 

Autodesk Revit was chosen because it is widely used for BIM in the 
Swiss planning industry. The script was constructed using Dynamo’s 
visual programming language in the calculations involving only one 
element per Generative Design solution. When the calculations involve a 
group of elements (Spaces, Apartments, Shafts, Technical Rooms), the 
equations are written in Python. 

3.4. Proof of robustness 

The prototype’s robustness was tested using a Monte Carlo Simula-
tion, a performance evaluation, and a PCA analysis, as outlined in the 
state-of-the-art section of this paper. 

First, the robustness of the parametric design was tested. The 
intention was to calculate the value for the probability of failure of the 
parametric design, meaning how often the algorithm cannot generate a 
solution for any input given. To evaluate this, different spaces in the 
models were defined as possible technical rooms, covering all the 
possible variants previewed in the VDI 2050 for the position of each 
technical room in a building. Two models were adapted to report on the 
building layouts with shafts on the building perimeter. Next, a Monte 
Carlo Simulation was performed using the Random feature of the Revit 

“Generative Design” add-in. 
In the second phase, the robustness of the GA was tested regarding 

three different types of robustness: problem instances, parameter values, 
and random seeds (PCA analyses). It was defined as a success if the al-
gorithm performed a 4.5 value in the total ranking of the fitness func-
tions and a computational time lower than 12 h. The algorithm was 
tuned regarding its initial population size and the number of generations 
to achieve the desired computation time. 

Finally, the models obtained by parametric designs and those plan-
ned by the B&H design teams were visually compared. 

All test runs concluded calculations successfully in less than 12 h of 
computation time running on an Intel® Xeon® E-2286 M 2.4GHz, 32GB 
RAM. 

4. Results 

This section presents the paper’s primary results based on the 
following structure. First, we frame the problem as a multi-case analysis. 
The best solution for a residential MEP early project concept involves a 
trade-off between minimizing the technical space(s) and ensuring that 
the defined space is enough to ensure the coordination, installation, and 
maintenance of the different MEP equipment. We then move to the 
concrete problem formulation. Each factor was normalized to provide a 
fitness score between 1 (poor) and 5 (excellent). The prototype was 
developed as described in Section 3.3 and included different system 
variants according to SIA, with all the features and fitness functions to 
optimize the objectives described above. Subsequently, we estimate the 
robustness of the algorithm. The results shown in Table 2 allow us to 
state with 95% confidence that the number of failures will not differ by 
more than 19.6% from the actual mean value. This means that the 
failure probability of the parametric design should be 19.3% at most. So, 
the algorithm should work in at least 80.7% of the BIM models within 
the specified domain. Finally, we tune the algorithm parameters to 
ensure adequate performance by defining the initial population size and 
the number of generations needed to perform the tests. 

4.1. Stakeholder requirements 

Based on the stakeholder interviews, it was possible to identify the 
size of technical rooms, shafts, and the horizontal distribution height as 

Fig. 1. BIM residential projects - multi-case analysis. 
i – Multifamily House; ii - Residential building with secondary use; A - Heating, Ventilation, and Plumbing in the same UG Room; B - Heating and Plumbing in the 
same room and Ventilation in different UG Room; C - Heating and Ventilation in the same room and Plumbing in different UG Room; D - Heating, Ventilation, and 
Plumbing in different Rooms in UG; E - Heating and Plumbing in the same UG Room; Ventilation in the Roof; F – Plumbing Room UG; Ventilation and Heating Rooms 
in the Roof. 
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this phase’s main space-related goals. From the architectural point of 
view, it is intended to minimize the technical space to ensure more us-
able space in the buildings. On the other hand, the engineers must 
ensure the predefined space is enough to provide the installation’s 
feasibility. Experts identified 215 ventilation, heating, and plumbing as 
the disciplines that have the most significant impact on space in a res-
idential project. The stakeholders confirmed that the “drawing” time for 
each solution should be faster than traditional methods and be at least as 
accurate. Therefore, it was decided to apply only those disciplines in the 
BIM-GD methodology and to validate the speed and accuracy/robust-
ness of the solutions developed. 

4.2. Multi-case analysis 

Fig. 1 presents the quantification of the BIM residential projects 
designed in B&H according to the variables defined in the VDI 2050. As 
shown below, the most common and repetitively identified shapes in 
residential projects with an available BIM model were the square/rect-
angular and free-form shapes. Most of the positions of the technical 
rooms described in VDI 2050 were found in B&H projects, except vari-
ants C and F. VDI 2050 classifies the number of shafts as “small” when it 
is less than 3 per 1000m2, “medium” if the value is between 4 and 5 per 
1000m2 and “large” when it is greater than 6 per 1000m2. In the 
analyzed projects, it was identified in at least one case for each group, 
and the “small” type was the most common. Finally, at least one case for 
all the VDI 2050 variants was identified regarding the shaft arrange-
ment, except buildings with the shaft arrangement in their perimeter. 

4.3. Prototype implementation requirements 

Following the multi-case analysis results, it was decided to develop a 
solution based on a residential building with a combination of square/ 
rectangle and free-form architectural design, offering a harmonious 
blend of structured and organic elements. It incorporates advanced and 
efficient ventilation, heating, and plumbing systems, ensuring optimal 
living conditions for the residents and sustainability in energy usage. 
The positioning of technical rooms within the building follows the 
guidelines of VDI 2050, with all rooms defined as per standard config-
urations, except for variants where the heating room is situated on the 
building’s roof. This deviation allows for exploring alternative ar-
rangements while maintaining functionality and convenience for all 
occupants. 

The study identified quantitative fitness measures to apply the GA. 
These measures were derived from the requirements outlined in in-
terviews with B&H engineers, resulting in the definition of five (5) 
fitness indicators. Firstly, the “Free height” measure reflects the per-
centage of the volume occupied by technical installations in spaces 
under 2.25 m height, with the GA aiming to minimize this indicator. 
Secondly, the “Coordination of the installation” metric evaluates the 
total collision volume in the distribution network, indicating how well 
the different distribution networks are coordinated; this value is to be 
minimized during the evolution phase. Thirdly, the “Technical room 
feasibility” measure calculates the adequacy of space available for pre-
dicted technical equipment, incorporating maintenance and installation 
areas, and this function should be maximized. Fourthly, the “Loss of 
apartment area” gauge represents the percentage of the apartment’s 
floor surface occupied by the vertical distribution, and the GA’s objec-
tive is to minimize this value. Finally, the “Loss of common floor area to 
technical installations” metric calculates the percentage of the build-
ing’s common area floor surface utilized by the technical rooms, with 
the optimized outcome aiming to be minimized. Each factor was 
normalized to provide a fitness score between 1 (poor) and 5 (excellent). 
The prototype was developed as described in Section 3.3 and included 
different system variants according to SIA, all the features, and the 
fitness functions to optimize the objectives described above. 

Fig. 2 presents the Pareto front results for three different system 

types obtained by the prototype in a residential building pilot test. This 
shows that the algorithm successfully identifies distinct solutions with 
similar fitness but are qualitatively different. 

4.4. Robustness test 

This section presents the robustness tests done on the developed 
Generative Design algorithm. The methodology selected followed the 
theory presented in section 2.2. 

4.4.1. Monte Carlo simulation (MCS) 
An MCS was performed using the BIM models in Fig. 1. To include all 

possibilities described in the VDI 2050 in the test, two new BIM models 
were created, with shafts located in the perimeter of the building. The 
Revit GD random engine was used to generate the random values for the 
MCS. This creates a design space of 18 variables, which is used to 
parameterize the design space used in the GA. 

When the Parametric Design was able to create a solution without 
errors for the input variables, that solution was given a performance 
value of 1. If the input values return an error, a performance value is 
zero. The test was conducted with 1000 random samples for each BIM 
model. The results per model are presented in Table 1. 

The upper and lower boundaries for the failure probability of the 
parametric design were calculated using the MCS theory (Section 2.2). 
The results shown in Table 2 allow us to state with 95% confidence that 
the number of failures will not differ by more than 19.6% from the actual 
mean value. This means that the failure probability of the parametric 
design should be at most 19.3%. So, the algorithm should work in at 
least 80.7% of the BIM models in this domain. 

GA Tuning: To verify the success of the GA, it was first necessary to 
tune it by defining the initial population size and the number of gen-
erations needed to perform the tests. We present the results of different 
GA test runs to determine the best parameters for the GA within the GD 
problem. 

Initial Population Size: To evaluate the impact of the initial pop-
ulation size on the Generative Design results, all the BIM models 
(problems – Fig. 1) were tested with population sizes from 8 to 100 
individuals. Each test run was performed through 10 generations. For 
each Pareto front, the average value and the variance of the normalized 
fitness function were calculated. The solutions with a lower average and 
variance have the best performance. The results are presented in Figs. 3 
and 4. 

From the results presented in the figures above, it is possible to verify 
that the normalized fitness function achieves a better solution (lower 
value – minimize problem) as the population increases. On the other 
hand, the variance of the solutions increases its average value with the 
increase of the population size. 

Computational time was also considered a factor in evaluating the 
GA’s performance. Fig. 5 presents the computational time expected for 
the 180th generation based on the registered times in each test run. As 
expected, the computational time increases proportionally to the pop-
ulation size. 

Considering these results, it was decided to use a population size of 
20 to find a good trade-off between the GA fitness function’s mean value, 
variance, and computational time. 

Number of Generations: After setting the initial population size to 
20, five test runs with five different seed values were performed for each 
BIM model, using 180 generations each. 

Further, the performance of the Pareto results of each generation was 
measured by the normalized mean of the fitness function. The results are 
presented in Fig. 6. This shows that 80% of the performance was ach-
ieved before the 130th generation in all test runs. This implies that the 
effort spent after the 130th generation will unlikely improve the solution 
quality. It was also noticed that only 36% of the test runs needed more 
than 100 generations to achieve 90% performance and that in only 31% 
of the test runs, this value was reached before the 50th generation. Also, 
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Fig. 2. Pareto front results of a pilot test.  
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note that the influence of the seed number on the number of generations 
needed to achieve a high performance was verified. 

4.4.2. PCA analysis 
As described in Section 2.2 (state-of-the-art), the seed can influence 

the performance of the GA. So, to verify the algorithm’s robustness 
relative to the seed, a comparison of the fitness indicators was made 
between the best results generated at the end of 180 generations for each 
of the five seed values used for each problem. It was verified that all 
solutions delivered the same fitness value. When different seeds were 
used, most other indicators showed different values for the same prob-
lem. Further, a visual analysis of the resulting building systems confirms 
different best solutions for each seed value (Fig. 2). 

A PCA analysis was performed for each set of five test runs to explore 

the differences between all the results presented in the Pareto front of 
the different test runs. Fig. 7 shows different clusters of results for each 
seed. This difference is more pronounced in models with more feasible 
possibilities for the technical rooms. However, all solutions have 
approximately the same fitness. 

4.5. Parametric design vs. traditional detailed design 

Finally, to validate stakeholder acceptance, the solutions generated 
by the GA were compared with those developed by B&H design engi-
neers. The MEP discipline visually made the comparison. An example of 
the comparison is presented in Fig. 8. The same system and technical 
room(s) selected in the detail design phase were defined as variables to 
generate the parametric design. 

As seen in Fig. 8, the results obtained are similar to the ones pre-
sented in the detailed design phase. The outcomes were validated by 
B&H experts, who agreed that the results have the correct level of detail 
for this phase of the project applied to space reservation. 

This validates two significant stakeholder requirements. Firstly, the 
algorithm develops acceptable solutions across the entire domain of 
problems, and secondly, the solutions generated by the algorithm are 
close to the optimally human-designed solutions. The time spent pre-
paring the BIM model to execute the Generative Design was also 
compared with the times proposed for the early project phase according 
to SIA 31. The proposed method saves at least 45% of the time required 
to generate solutions in this project phase. 

5. Discussion 

This work aimed to evaluate the possibility of using Generative 
Design in the initial phase of a residential building project in Switzerland 
to define the space needed for its technical installations. The results 
demonstrate that a BIM-GD-based algorithm produces a result in 99.1% 
of 9000 calculated examples and that we can state that with 95% cer-
tainty, the chance of the algorithm failing is less than 19.3%. The 
implication is that there is a significant potential for applying a BIM-GD 
method in the early phase of a project. This would increase the decision- 
making capacity of the project participants more efficiently and improve 
the industry’s productivity levels in this phase of the project. The data 
confirm that the speed and certainty is better than is the case with the 
traditional approaches. 

The results obtained from the GA robustness tests reveal that the GA 
can be classified as widely applicable across multiple problems and 
tolerable regarding the parameter values. These results can be considered 

Table 1 
Monte Carlo simulation results.  

Building Random Samples Failures 

A 1000 6 
B 1000 15 
C 1000 12 
D 1000 3 
E 1000 15 
F 1000 6 
G 1000 13 
H 1000 6 
I 1000 4  

Table 2 
Monte Carlo simulation probability of failure results.  

Variable Description Variable Notation Value 

No. of samples n 9000 
No. of failures nf 80 
Probability of failure Pf 0.89% 
Mean Value of the Samples x‾ 0.991 
Variance s2 0.009 
Standard Deviation s 0.094 
Cofidence Coefficient for a 95% Confidence Level Zc 1.96 
MCS Percentage Error of the mean E 19.6 
Mean Value of the Samples Lower Bound x‾ L 0.807 
Mean Value of the Samples Upper Bound x‾ U 1.175 
No. of failures Lower Bound Nf L 1736 
No. of failures Upper Bound Nf U 0 
Probability of failure Lower Bound Pf L 0% 
Probability of failure Upper Bound Pf U 19.3%  

Fig. 3. GA tuning – normalized fitness function av. value (NFFAV): problem vs population size.  
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good enough for a 1st GD prototype compared to what the industry 
expected. Those expectations collected at the project’s beginning 
regarding the robustness levels were much lower. We can confirm this 
since the method was tested on apartment buildings, which represent 
the main type of buildings where the Swiss population lives, and we 
obtained a success rate of at least 81%. This is much higher than ex-
pected by stakeholders [8,9] who believe it is not possible to use GD 
technology in their projects. It will be necessary to introduce the tech-
nology into the market so that it can be tested and validated by early 
adopters, and only then can its performance evolve to more satisfactory 
levels. The market introduction will be discussed in another paper. 

The analysis of the test run results via PCA analysis indicates that 
different seed values influence the GA’s performance, indicating that the 
solutions found correspond to local optima and not the global optimum. 
Nevertheless, they are still valid solutions with similar fitness and are 
obtained more effectively than traditional means. In the real world, if a 
solution for the same project is given to two different design teams, the 
probability that they present the same solution is also considered low. 

The comparison between the concepts obtained by parametric design 

and B&H’s detailed design projects (Section 4.4) reveals an acceptable 
level of similarity between the results. If the approach presented in this 
paper is applied to a real-time project and confirms the results of the 
pilot tests, it may be considered a future way to work in the early phase 
of engineering projects. As shown in section 4.3, the calculation time 
taken in all studies was less than 12 h to complete the 180th generation, 
increasing acceptance by engineers and project managers alike. 

With the performance results shown in the graph in Fig. 6, it can be 
stated that the improvement in the Pareto front results is slight in most 
studies from generation 100 onwards. This means that the calculation 
time can be halved, with most studies achieving Pareto front results in 
less than 5.5 h. This approach would improve the decision-making 
capability of the project stakeholders, as an architectural concept can 
be sent in the morning to the engineering team and discussed in the 
afternoon, with the best trade-offs calculated by the algorithm and 
validated by the engineers. In conjunction with the 3d visualization 
capability obtained with BIM models, results that now take weeks to 
produce could be analyzed in days, decreasing the production gap of this 
phase of the AEC project. 

Fig. 4. GA tuning – normalized fitness function variance (NFFV): problem vs population size.  

Fig. 5. Monte Carlo simulation time vs population size.  
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5.1. Theoretical contribution 

This paper addresses the problem of optimizing the design of tech-
nical spaces in residential buildings at an early project stage. The key 
issues include ensuring that these spaces are sufficient for installing and 

maintaining various mechanical, electrical, and plumbing (MEP) 
equipment while minimizing the loss of usable area in the apartments 
and common areas of the building. The problem is reformulated using 
Building Information Modeling (BIM) and a Generative Design approach 
as a multi-objective optimization problem and was solved using a 

Fig. 6. Monte Carlo simulation probability of failure results. Each line represents the normalized mean fitness for a different seed and building type.  

Fig. 7. PCA results for different initial seed values.  
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Genetic Algorithm (GA). The GA was tuned to define the initial popu-
lation size and the number of generations needed to derive a result. 
Monte Carlo Simulation (MCS) was used to prove the robustness of the 
approach for the most significant building arrangement possibilities. 
The combination of BIM-GD and a robustness proof based on MCS is a 
novel and significant contribution to the digitization of the AEC 
industry. 

The robustness analysis and problem formulation were based on 
requirements determined by stakeholder interviews. Therefore, the 
technical results provide objective arguments for introducing BIM-GD, 
especially in the early stages of an AEC Project. Thus, in addition to 
the novel robustness results, the paper establishes a process for proving 
the suitability of Generative Design for solving real-world problems. 

The contributions of this paper are, firstly, the identification of 
algorithmic robustness as a key acceptance factor in the application of 
GD methods in AEC early phase projects by interviews with experts; 
secondly, the develop a prototype implementation based on relevant 
fitness measures; and thirdly, the application of Monte Carlo Simulation 
to obtain initial quantitative estimates of the robustness of the proto-
type. This addresses the research gaps identified: Reasons for the lack of 
acceptance and robustness results. 

5.2. Managerial implications and policy contributions 

The solution addresses the industry’s main concerns through in-
terviews and validates that the solution addresses these concerns after 
the implementation of the prototype. The paper presents an approach to 
reducing the time required for calculation and minimizing the area 
needed for MEP, improving profitability. The proposed approach can 

improve the communication and decision-making capability of the 
project stakeholders, as an architectural concept can be sent in the 
morning to the engineering team and discussed in the afternoon, with 
the best trade-offs calculated by the algorithm and validated by the 
engineers. 

This paper contributes by developing an algorithm that will work in 
at least 81% of the BIM models within the specified domain. This means 
that the failure probability of the Generative Design should be at most 
19%. Further, the algorithm can be run in five hours with acceptable 
performance. The study results also provide a tool for rapidly evaluating 
the impact of design changes. Currently, such work is performed 
manually. Creating these solutions takes significant time and effort, or, 
more commonly, additional ‘safety’ space is left to absorb the risk that 
the MEP equipment might need more space. Reducing the time required 
for calculation and minimizing the area required for MEP will improve 
profitability. 

The paper also highlights essential policy contributions to promote 
technological innovation in the AEC industry. Policymakers can play a 
crucial role by supporting and encouraging the integration of advanced 
technologies like Generative Design algorithms. Providing incentives, 
funding research and development, and fostering collaborations be-
tween academia and industry can drive the adoption of such innovative 
tools and methodologies. This paper’s results can support policymakers 
encouraging the introduction of BIM-GD-based problem-solving tech-
niques in the overall AEC industry as it provides proof of the real-world 
applicability of the approach. 

The implication for project management is that it is possible to 
further improve the efficiency of AEC projects by introducing the use of 
GD in the project’s early phase. Management, policymakers, and tool 

Fig. 8. Visual comparison between B&H’s detailed designs and parametric design results.  
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developers should, therefore, support the further development of such 
tools and fund additional research into the performance and optimiza-
tion of the performance of the algorithms. 

5.2.1. For practitioners 
This document outlines an approach for integrating advanced algo-

rithms with BIM to automate early building design that can support 
practitioners in becoming more productive and improving their early 
space allocations. We suggest to focus on critical steps such as data 
preparation, software integration, and specialized engineering training, 
and emphasize the importance of ensuring data and system compati-
bility and provides a structured workflow for seamless integration. This 
document also highlights best practices for efficient design iterations, 
stressing the need for streamlined communication and effective 
decision-making between the algorithm, BIM system, and project team 
to enhance the overall design process. Practitioners must learn to inte-
grate such models into their normal design processes to support their 
clients better. 

5.2.2. For policymakers 
For policymakers, we suggest implementing incentive structures like 

tax breaks or grants to encourage companies to adopt advanced BIM 
technologies, emphasizing the importance of government-funded 
collaborative research projects between universities and industry for 
developing and testing generative design algorithms. Additionally, the 
paper advocates for creating specialized training programs and curric-
ulum modules in academic institutions. These initiatives aim to prepare 
future professionals in the AEC industry for advanced tools, ensuring a 
skilled workforce and promoting innovation and efficiency. 

6. Conclusions 

Compared with the traditional approaches, this paper presents an 
improved approach to reducing the effort introduced by BIM in the 
concept phase of an AEC project. The problem was analyzed using a 
systems engineering methodology, identifying the industry’s main 
concerns through interviews and validating that the solution addresses 
these concerns after implementing the prototype. 

A Generative Design approach was developed, implemented in a 
prototype and tested. The robustness levels obtained in the pilot projects 
indicate that it is possible to apply Generative Design in the early phase 
of an MEP project. The results also showed that the solutions found by 
the Genetic Algorithm represent a local optimum of the design problem. 
However, all designs in the Pareto front achieved similar fitness values 
and were considered an acceptable solution for this phase of the project. 
This reveals the great potential of the GD method to replace the tradi-
tional method by enabling the development of similar solutions with 
much less effort. 

Applying the methods developed in the paper paves the way for 
proving the robustness and real-world applicability of the GD approach 
in the construction industry. This proves there is still enormous potential 
for digitizing processes, increasing efficiency, saving costs, and 
improving quality. This should motivate policymakers to support further 
research and demonstration projects that explore GD in the construction 
industry. 

7. Future work 

The results of the project point to several interesting lines of further 
research. Firstly, this is just the first prototype. It is expected that sig-
nificant performance improvements can be achieved when using other 
optimization approaches with the Genetic Algorithm or developing 
advanced heuristics based on Machine Learning based on the solutions 
being generated. Additionally, the discrepancy between the estimated 
success rate (99.1%) and the success rate calculated with 95% accuracy 
(80.7%) shows that there is enormous potential to evaluate the 

robustness of the result correctly. The success rate will be higher than 
measured, as bugs were found and corrected during the test phase. 

As the algorithm is used more often, the number of samples 
(currently 9000) will increase, automatically leading to a better esti-
mate. Additionally, technical work on the method, for instance, basing 
the estimate on non-Gaussian distributions, may provide tighter 
boundaries on the estimate. The algorithm can also be extended or 
improved by including further disciplines or extending the range of 
buildings to which it may be applied. 

Regarding performance, as the REVIT GD algorithm was used, there 
were few possibilities to optimize the genetic algorithm or try other 
optimization approaches. By using a different software framework, 
significant performance improvements may be possible. To improve 
performance and increase industry acceptance, the Generative Design 
Algorithm needs further development based on a close relationship with 
the early adopters. When GD performance achieves high levels of 
customer satisfaction and a good level of confidence in the engineering 
teams, the script can be translated into an open-source environment. 
This would enable a digital cloud service to allow clients to obtain their 
project solutions automatically. Migrating to a cloud service could 
reduce model preparation effort, decrease computational time, and 
allow customers to test different concepts independently and cost- 
effectively. 

Finally, the results are limited to the residential building use case and 
could be extended to other use cases, for example, hotels, businesses, or 
mixed-use buildings. 
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